

Rapid Speed Transportation Initiative

An update on the Midwest Connect Corridor Studies

ARTBA Central Region Meeting November 8, 2018

US | CHICAGO-COLUMBUS-PITTSBURGH

TEAM: MIDWEST CONNECT

Total Length: 785 km Total Duration: 47 min

785 km 47 min CHICAGO 493 km **PITTSBURGH** 29 min 292 km COLUMBUS 18 min

hyperl∝p one

Hyperloop Primer

Hyperloop Explained:
https://hyperloop-one.com/hyperloop-explained

Hyperloop Test Track Tour:

https://www.youtube.com/watch?v=mJkajPSv0M

Virgin Hyperloop One Global Challenge Winner

Connecting the Midwest Megaregion

PASSENGER FLOWS 2040, without & with Hyperloop

CARGO FLOWS

2040 by Value, without & with Hyperloop (million \$)

Rapid Speed Transportation Initiative (RSTI)

- \$2.5 million study of rapid-speed technology options (traditional passenger rail and hyperloop)
- Chicago-Columbus-Pittsburgh corridor
- Two initial phases:
 - 1. Hyperloop Feasibility Study
 - 2. Components of Tier 1 Environmental Impact Statement (first-of-its-kind)
- Future phase: Two complete EIS projects
- Multiple public & private funding partners

RSTI Funding

Current Study Funders

- State of Ohio DOT
- City of Columbus
- City of Lima
- City of Dublin
- City of Marysville
- Union County
- MORPC
- ...more to come

Hyperloop Feasibility Study

- Task 1 Visioning and Technology Application
- Task 2 Route Planning
- Task 3 Transportation Demand and Economic Benefit Analysis
- Task 4 Regulatory Framework and Implementation Strategy
- Project Management, Stakeholder, and Public Engagement

Components of Tier 1 EIS

- Task 1: Project Management
- Task 2: Preliminary Data Collection
- Task 3: Purpose and Need Statement
- Task 4: Route Alternatives
- Task 5: Service Alternatives
- Task 6: Infrastructure Investments
- Task 7: Public Involvement

RSTI Timeline

Fair Comparison of the Two Technologies

WHY?

- Set up the project to move forward towards IMPLEMENTATION
- Apples-to-Apples: don't want a "Monorail Solution"

Fair Comparison of the Two Technologies

Items to be Considered:

- Right of Way Costs and Impacts
- Environmental Concerns / Impact Mitigation
- Station Costs and Impacts
- Rolling Stock Costs
- O&M Costs
- Operational equity:
 - How many trains per day? No wait times for Hyperloop?
 - How fast will the steel-wheel high-speed rail be assumed to travel?

Opportunities to Consider

- Where each type of technology makes the most sense
 - Gary Lima pre-NEPA activities
- Differences in geography and terrain
- Progress made in other corridors – US and abroad

Possible Challenges

- Safety and reliability when dealing with factors such as very high speeds, power outages, capsule depressurization, and/or geological activity
- Limited route flexibility compared to other long distance travel modes; aircraft has the ability to change routes if there are geographic shifts in demand
- When considering passenger comfort, high travel speeds will limit curve radii and departure/arrival speeds
- Limited capacity compared to other long distance travel modes, which may limit potential to serve significant percentages of total intercity passenger or freight demand
- Obtaining sufficient funding and acquiring necessary property/easements to connect potential alignments between locations

Work in Progress

- Data collection
- Freight Railroad coordination
- Purpose & need
- Existing corridor capacity
- Route alternatives

Alternatives Identification and Service Planning

Next Steps

- Determine federal champion
- Identify regulatory framework
- Develop screening criteria for route alignments
- Conceptual engineering
- Capital cost estimates
- Implementation and phasing plan
- Public outreach on both projects

What will the Future Hold?

Thea Walsh, AICP

Director – Transportation
Systems & Funding
Mid-Ohio Regional Planning
Commission

twalsh@morpc.org

Anna Lynn Smith, AICP
Senior Supervising
Planner/Project Manager
WSP USA, Inc.

Annalynn.smith@wsp.com

